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Supplementary Figure S1: Maximum matching of digraph and its bipartite represen-

tation. (a) An example of a �ve node directed network controlled via the MDS = {1,3}. Red
arrows are denoted as matching edges. (b) Bipartite representation of the network (a). In the
bipartite graph, nodes are converted into two disjoint sets of nodes: + set and - set. Any directed
edge from node i to node j in a corresponds to a connecting between i+ and j−. The MDS is
comprised of the unmatched nodes (blue) in the - set, here {1,3}, and the MTS is comprised of
the unmatched nodes (cyan) in + set which in this case is {2,5}. The MDS and MTS contain
the same number of nodes. Any single network may have multiple maximum matching solutions
� there is no unique solution in general. This implies that the network may be controlled by
multiple MDSs. Only one of the possible MDSs is shown in this example.
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Supplementary Figure S2: V-motifs in SI networks (a) A more complex three-node cluster,
where R1 → {L1, L2} is a V-motif but R2 → {L1, L2, L3} is not. {L1, L2, L3} forms a cluster
which is shown by the grey shading. (b) Shows a similar con�guration to a, for which there are
no clusters of any type. (c) An example of a complex four-node cluster (Supplementary Note 2).
(d-f) An example of SI cluster determination in a complex network with MDS = {4, 6, 13, 14}.
(d) Node Classi�cation: determine the nodes into two main types: SR nodes and SI nodes,
where driver nodes are always SI. (e) SI Network: determine SI network by removing incoming
edges to SR nodes. (f) SI Cluster: determining the SI clusters by searching for V-motifs in SI
network. Only {14, 1, 5, 7} is a cluster since it contains a driver.
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Supplementary Figure S3: E�ective sink augmentation of a small network. This should
be compared with e�ective source augmentation in Fig.3 main text. (a) A directed network
with eighteen nodes contains MTS={2,9,15,17} which is determined by maximum matching
(Supplementary Figure S1). (b) By applying our node classi�cation algorithm, we divide the
nodes into di�erent categories: KI nodes (non-terminal nodes) {3,5,6} are red and KR nodes
{1,4,7,8,10,11,12,13,14,16,18} are yellow. Terminal nodes are shown in cyan. (c) The `KI net-
work' is determined by removing all outgoing edges from every KR node (yellow) while the
incoming edges remain. (d) Multiple V-structures are identi�ed in c. They are: {15, 3} → 11,
{3, 5} → 2, {9, 6} → 17. Then, based on the V-motifs, we can identify two KI clusters {15,3,5}
and {9,6}. (e) To verify the features of clusters, two independent sink nodes are augmented to
each cluster, 6→ K1, 3→ K2. By classifying nodes in this new network we �nd every node in
the cluster become KR and the newly connected nodes K1, K2 become new terminal nodes while
the total number of terminal nodes remain four. (f) The augmented network is still structurally
controllable with the same MDS as shown in Fig.3 in the manuscript which implies that source
augmentation and sink augmentation can be implemented in parallel without con�ict.
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Supplementary Figure S4: Determining KI clusters via V-motifs in KI networks (a-d)
Fragmented sub-graphs in KI networks. The KI nodes are correlated as roots in a `V-motif' or in
multiple `V-motifs' that lie in the KI network. (a) A prototypical V-motif for sink augmentation
which is comprised of one leaf node and is pointed to by two root nodes (KI nodes). The two
root nodes (R1, R2) are considered as a KI cluster since: i) R1 is a terminal node; ii) two KI
nodes are correlated via a V-motif and no other KI nodes are correlated to this terminal node.
(b) R1, R2, R3 are connected via two serial V-motifs and therefore, {R1, R2, R3} is a KI cluster.
(c-d) More complicated forms of V-motifs. (c) {R1, R2} → L1 is a V-motif, thus, C1 = {R1, R2}
can be considered as a composite node. Then, we �nd a new V-motif forms as {C1, R3} → L2.
Since no other KI nodes are involved, thus, {R1, R2, R3} is a KI cluster. (d) Using the same
concept, we �nd {R1, R2, R3, R4} is a KI cluster.
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Supplementary Figure S5: The relationship between nSIC and nMAS in synthetic net-

works. (a) nSIC = NSIC/N and nMAS= NMAS/N versus 〈k〉 in scale-free networks are shown
in blue dots and yellow triangles respectively, where, N is total number of nodes. nD = ND/N
and s = S/N versus 〈k〉 are shown in insert �gure. (b) nSIC and nMAS in Erd®s-Rényi networks
is demonstrated.
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Supplementary Figure S6: Fraction of SI cluster and KI cluster versus fraction of driver

nodes in real networks. The left and right symbols associated with each network type in
�gure legend represent nSIC and nKIC respectively.
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Supplementary Figure S7: Correlations between MDSs and MTSs. (a) A directed network
with �ve nodes can be controlled via four di�erent maximum matching solutions. Each �gure
contains two matching paths and each one begins with an driver node (blue) and ends with a
terminal node (cyan). Matching edges are coloured in red. (b) SI nodes are union of all possible
MDSs: SI = {1, 3} ∪ {1, 2} = {1, 2, 3} as shown in red nodes in top plot. Similarly, KI={2,3,5}
is determined from the combination of all MTSs as shown in bottom plot.
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Type Name Description

Electronic s208 [1] Network parsed from the ISCAS89 benchmark data set
Circuits s420 [1] Same as above

s838 [1] Same as above

Food Web Everglades [2] Everglades Graminoid Marshes
Baywet [3] Florida Bay, Wet Season
Gramdry [3] Everglades Graminoids, Dry Season

Social Cons-frequency-rev [4] A consulting company intra-organisational network
Manuf-frequency-rev [4] A manufacturing company intra-organisational network

Transcription Ecoli [5] Transcriptional regulation network for E.coli
Yeast [6] Transcriptional regulation network for Yeast
ColiInterFullVec [7] Transcriptional regulation network of Escherichia coli

Power Grid Dallas [8] High-voltage power grid network in Dallas

Cortical Macaque cortical [9] Macaque cortical connectivity

Neuronal C. elegans-1 [10] C. elegans local network of 131 frontal neurons
C. elegans-2 [11] C. elegans global network of 277 neurons

Cellular AA [12] Cellular network of Aquifex Aeolicus
BB [12] Cellular network of Borrelia Burgdorferi
EF [12] Cellular network of Enterococcus Faecalis
PA [12] Cellular network of Pseudomonas Aeruginosa

Supplementary Table S1: For each network, we show its type, name, reference, and brief description.
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Type Name N L nD nSIC nKIC

Electronic s208 122 189 0.24 3.28 19.67

Circuits s420 252 399 0.23 2.38 19.84

s838 512 819 0.23 1.95 19.92

Food Web Everglades 69 916 0.30 2.90 2.90

Baywet 128 2137 0.23 0 0

Gramdry 69 915 0.30 2.90 2.90

Social Cons-frequency-rev 46 879 0.04 0 0

Manuf-frequency-

rev

77 2228 0.01 0 0

Transcription Ecoli 419 519 0.75 0.48 3.10

Yeast 688 1079 0.82 2.76 0.87

ColiInterFullVec 424 577 0.73 0.24 6.13

Power Grid Dallas 4941 13188 0.12 5.75 6.64

Cortical Macaque cortical 1168 2486 0.04 3.42 3.42

Neuronal C. elegans-1 131 764 0.09 0.76 0

C. elegans-2 277 2105 0.12 1.08 0.72

Cellular AA 1485 3400 0.29 10.71 9.90

BB 804 1674 0.27 8.33 7.71

EF 1407 3290 0.31 10.95 10.73

PA 2554 6080 0.32 11.51 10.14

Supplementary Table S2: For each network, we show its types, name, number of nodes
(N), edges (L), fraction of driver nodes (nD), minimum proportion of new source and sink
nodes can be augmented in parallel (nSIC and nKIC), Note that nSIC and nKIC are shown
in percentage.
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Supplementary Note 1: The set of SI and KI nodes is the union of all MDSs and

MTSs respectively

Theorem 1: The set of SI nodes of a arbitrary directed network G(A) is the union of all nodes

in every possible MDS.

Theorem 1 is equivalent to the following two statements: i) Any node Vi in G(A) is an SI node
if it is a member of at least one possible MDS. ii) Vi is SR if it is not a member of any MDS.

Proof : Statement i) If Vi belongs to at least one MDS, then there exists at least one max-
imum matching solution such that Vi is unmatched. Connecting a new test source node to an
unmatched node will not a�ect the total number of unmatched nodes (i.e., drivers). Thus, ac-
cording to node classi�cation, Vi is an SI node.

Proof : Statement ii) If Vi is not a member of any MDS, then it never needs to be controlled.
Connect a test source node VS to Vi and assume the new augmented network is still structurally
controllable with the same ND. Since source node VS has no incoming edges, it is always needs
to be controlled. Hence, remove VS from the network, the remaining network (G(A)) should be
fully controlled with ND − 1 driver nodes. This leads to a contradiction. Then, our assumption
fails, and the number of drivers ND required to fully control the new network increases when
the test node is added to Vi. Hence, Vi is an SR node.

Theorem 2: The set of KI nodes of a directed network G(V,E) is the union of all nodes in

every possible MTS.

Proof : The concepts introduced in Theorem 1 hold for Theorem 2. Denote G(AT ) as a directed
network with transposed state matrix AT . Then, the MTS of G(A) is the MDS of G(AT ).
Hence, Theorem 2 is equivalent to proving theorem 1 with the new network G(AT ).
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Supplementary Note 2: Determining clusters from complex V-motifs

In the main text Fig. 4, we explained how to locate clusters generated from simple in-
tersecting V-motifs. Here we examine more complex cases that can arise. For example, in
Supplementary Figure S2a, the root node R1 → {L1, L2} is a V-motif but R2 → {L1, L2, L3}
is not. From studying maximal matching solutions, a simple rule emerges that allows us to
accommodate such special cases. In this case we treat L1 and L2 as a merged composite node
C1 = {L1, L2}. Then the structure R2 → {L1, L2, L3} can be collapsed to R2 → {C1, L3}, which
should be viewed as a V-motif. Thus {L1, L2, L3} forms a cluster. Maximum matching shows
this three node set has the same fundamental property of clusters. Figure S2b shows a similar
con�guration to Figure S2a, for which there are no clusters of any type. This is because R1

and R2 are not root nodes of any V-motif. With the same procedure, in Figure S2c, we identify
the V-motif R1 → {L1, L2}. Nodes L1 and L2 can be merged to form the composite node C1

= {L1, L2}. Nodes L3 and L4 can also be merged as a composite node C2 = {L3, L4}. Then,
R2 → {L1, L2, L3, L4} is equivalent to R2 → {C1, C2} which is a V-motif. Thus, {L1, L2, L3, L4}
is a cluster (L1 is a driver).

Another example of determining SI cluster from V-motifs is demonstrated in Supplementary
Figures S2d-S2f. In Figure S2d, the new MDS is determined as {4, 6, 13, 14} (blue nodes).
Following the procedures introduced in the manuscript, we �rst �nd the SI network (Figure
S2e). SI clusters are then found by searching for V-motifs in the SI network. The outcome is
shown in Figure S2f, which indicates that now the set {14, 1, 5, 7} is the only cluster. Note that
{12, 3, 15} is not a cluster since it does not contain a driver node.

Once an SI cluster is identi�ed, it can be removed from the SI network so as to prevent
unintended creation of incorrect V-motifs and SI clusters. For example, the SI cluster {4, 6} in
Fig. 3c can only be identi�ed after removal of its neighbouring cluster.

Important to note that SI clusters contain no source nodes and in many real situations
augmenting to source nodes is impractical. For example, in power systems, generators can be
viewed as source nodes (a subset of the driver nodes) and augmenting a new generator to a
existing generator is unnecessary.
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Supplementary Note 3: Source and sink augmentation can operate in parallel

As we proved earlier, SI (or KI) nodes are the union of nodes in all possible MDSs (or MTSs).
We �nd that for an arbitrary directed network with m MDSs (MDS1, MDS2, · · · , MDSm) and n
MTSs (MTS1, MTS2, · · · , MTSn), any pair of MDSi and MTSj , has its own unique maximum
matching solution, where i ∈ (1, 2, · · · ,m) and j ∈ (1, 2, · · · , n). Hence, adding a source node to
a node in MDSi will not change MTSj and similarly, adding a sink node to nodes in MTSj will not
a�ect MDSi. For example in Supplementary Figure S7, a �ve node network can be structurally
controlled via two possible MDSs: MDS1={1,2}, MDS2={1,3}. After implementing maximum
matching of its transpose network, we �nd two possible MTSs: MTS1={2,5}, MTS2={3,5}.
Then, as shown in Supplementary Figure S7 a, with any combination of an MDS and an MTS,
the network remains fully controlled but with di�erent maximum matching solutions. Thus, in
e�ect, one can augment source nodes and sink nodes in parallel.
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Supplementary Note 4: Model of random networks

Generating Erd®s-Rényi networks

We refer to Erd®s-Rényi networks as graphs G(N, p), which have N nodes and the probability
that an edge is present between any pair of nodes is p where 0 ≤ p ≤ 1. A graph in G(N, p) has on
average

(
N
2

)
p edges. The out- and in- degree distribution is given by Pout,in(k) = (Np)ke−Np/k!

whereNp is constant. This distribution is Poisson for largeN and the mean-degree isNp = 〈kin〉
= 〈kout〉 = 〈k〉 /2.

Generating scale-free networks

The scale-free networks analysed in this paper are generated via the static model as follows [13,
14]. We start from N disconnected nodes indexed by the integers i (i = 1, 2, · · · , N). Each node
i has an out- and an in-weight wout,ini = i−αout,in , where αout,in = 1/(γout,in − 1) and γout,in
are exponents of the out- and in-degree distributions. Then, we randomly select two nodes i
and j from the set of N nodes, and if they are not connected we connect them. Otherwise, we
select a new pair of nodes. The probability of an edge from i to j depends on the out-weight of
node i (wouti ) and the in-weight of node j (winj ). The above process is repeated until the desired
number of links are created. Note that γout,in must be greater than or equal to 2. (When
γout = ∞, we retrieve Erd®s-Rényi random networks.) The network typically has a power-law
degree distribution. In the large k limit, degree distribution is shown as a function of gamma:
Pout,in(k) ∼ k−γout,in .
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